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Abstract

With the growth of urban centers in recent years and the resulting changes
in infrastructure, the capacity of many existing storm water management sys-
tems has been stretched to its limit. Altered surface hydrology increases sur-
face runo� which reaches drainage channels more quickly, resulting in greater
system loads. To handle this increased 
ow, many of these channels need
to be redesigned. Complicating this process are the restrictions on channel
designs due to other structures, such as roads, bridges and multi-story build-
ings, because alterations to these structures can be quite expensive. Designing
high-velocity channels to handle the increased water 
ow while minimizing the
alterations to existing structures is a formidable task, with the current design
technique being a trial and error approach.

In this paper, we present an e�cient, deterministic design method, which
applies the adjoint variable formulation of direct di�erentiation to a computa-
tional, open-channel 
ow model in order to obtain the derivative of an objec-
tive function with respect to the design variables. From these derivatives, we
modify the design variables with the goal of minimizing the objective function.
The particular CFD code (HIVEL2D) uses an unstructured, Petrov-Galerkin,
�nite element method to solve the unsteady, two-dimensional, depth-averaged,
shallow water equations. The test cases involve channel contraction problems
with one, two and three design variables, where uniform downstream 
ow is
the goal. For these cases, the iterative design process produces channels that
yield about a 90% improvement over straight wall contractions.

1Graduate Student, Computational Engineering, Mississippi State University.
2Associate Professor, Civil Engineering, Mississippi State University, Member ASCE, Member AIAA.
3Research Hydraulic Engineer, USAE Waterways Experiment Station, Coastal and Hydraulics Lab-

oratory, Vicksburg, Mississippi.
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1 Introduction

Flows through high-velocity channels produce hydraulic phenomona, such as hydraulic
jumps and standing waves, in conjunction with changes in the channel shape, such as a
contraction or the existence of a bridge pier or other obstructions in the 
ow �eld. These
standing waves propagate down the channel far beyond the obstruction. Occasionally, a
change in the shape of the channel causes the 
ow to transition from high velocity to low
velocity 
ow, where the depth of 
ow is much greater and may result in 
ooding. By
modifying the channel design, the damaging e�ects of these hydraulic phenomena can be
reduced or eliminated.

The shape of the channel is determined parametrically by one or more design variables.
For instance, the design variables for a channel consisting of straight wall segments would
be the locations of the intersections of these segments, or for a channel with curved walls,
the design variables could be the control points for a bezier curve or for a polynomial
interpolating curve.

Once the channel's design variables ~� are chosen, an appropriate objective function F
is selected. The objective function could measure the non-uniformity of the 
ow, the
maximum height over a region or along the walls, or the change in the average energy or
the head loss through a channel transition. Since the 
ow is dependent on the channel
design, the objective function will indirectly be a function of the design variables. By
adjusting the design variables, the value of the objective function can be minimized.
The derivative of the objective function with respect to each of the design variables is
approximated by using the adjoint variable formulation of direct di�erentiation[1], and
the design variables are adjusted accordingly, which modi�es the channel design. In the
literature, these derivatives are referred to as the design space derivatives.

To simulate the 
ow through the channel, HIVEL2D[2] is used. This code solves the
unsteady, two-dimensional, depth-averaged, viscous, shallow water equations[3], which
ignore Coriolis forces and wind e�ects. It uses a Newton-Raphson iteration method to
advance the solution in time and a Petrov-Galerkin �nite element formulation for the
spatial domain. This approach is presented in Section 3.

A conceptually simple approach to estimate each term dF
d�i

is to use the �nite di�erence

approximation for each design variable, dF
d�i

(~�) � F (~�+��i)�F (~�)
�i

. For a problem with N

design variables, one steady-state simulation is needed to calculate F (~�) and a steady-

state simulation is needed for each perturbed grid ~� + ��i, in order to calculate the
one-sided �nite di�erence. Hence, N + 1 steady-state simulations are needed, if a �nite
di�erence approximation for the gradient is used. Rather, by using the adjoint variable
formulation for direct di�erentiation, the design space gradients can be estimated with-
out the need for further steady-state simulations. This method and the corresponding
modi�cations to HIVEL2D are presented in Section 4.
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Once the gradient of the objective function is known, the design variables are adjusted
using the method of steepest descent[4], or ~�n+1 = ~�n � ��rF , where � is a scaling
term to ensure that the magnitude of the gradient and of the design variables are similar
and � is determined from one linear search step. The particular implementation of the
method of steepest descent is presented in Section 5.

The material presented in this paper demonstrates that the adjoint variable formulation
of direct di�erentiation can be applied to open-channel design optimization. Hence,
channel design optimization can be accomplished in a deterministic fashion and with a
much more reasonable amount of computation. To illustrate this technique, application
has been made to four channel contraction design problems.

2 Background

Many di�erent 
uid dynamics codes simulate the 
ow of water through man-made open-
channels and through other structures. Designers use these codes, in conjunction with
scale models, to analyze the merits of a particular channel design. By using their exper-
tise, they adjust the channel design in order to obtain the desired e�ects. Unfortunately,
this trial and error process relies heavily on the designer, is not deterministic and provides
no information concerning the nearness to an optimal solution.

Researchers in �elds such as structural engineering and aerospace engineering have stud-
ied a variety of design problems and have successfully extended the capabilities of their
simulation codes to include deterministic design optimization routines. The adjoint vari-
able formulation of direct di�erentiation, which has been successfully used to calculate
design space gradients for various aerospace applications, can be applied to the incom-
pressible 
uid dynamics codes that are used in modelling 
ow through man-made chan-
nels. The equations governing 
ow through man-made channels have some di�erences
from those governing 
ow around airfoils. In particular, the friction models, turbulence
models and dissipation models are di�erent, and the hydraulic jumps in supercritical 
ow
are inherently unsteady. Further, the simulation code HIVEL2D uses a �nite-element ap-
proach, which is di�erent from the algorithms used in the design optimization codes in
aerospace engineering. In this paper, the e�ects of these di�erences on the optimization
process are not analyzed, but rather, it is shown that the technique of the adjoint formu-
lation of direct di�erentiation can be applied to the simulation code, HIVEL2D, despite
these di�erences.
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3 Discretization and Simulation Algorithms

Analysis of open-channel 
ow in hydraulically steep channels can be made by solving
the unsteady, two-dimensional, depth-averaged, viscous, shallow water equations[3]. The
particular formulation of these equations is given below with h representing depth of

ow, p representing the 
ow discharge in the x direction and q representing the discharge
in the y direction. This formulation neglects free-surface stresses and Coriolis forces.
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For these equations, g is the acceleration of gravity, the �0s are the various Reynold's
stresses, z is the elevation of the channel bed, n is Manning's roughness coe�cient and
C0 is a dimensional constant, which is 1.0 when the depth and velocities are measured in
meters and meters/second and 2.208 when the depth and velocities are measured in feet
and feet/second

The simulation code HIVEL2D[2] is used to solve the shallow water equations. HIVEL2D
is an unstructured, �nite element solver, which is used to simulate 
ow in both the su-
percritical and subcritical regimes and allows the speci�cation of the appropriate bound-
ary information for both cases. The approximation of actual water 
ow by the two-
dimensional, shallow water equations is limited to the cases where the channel bed slope
is small and where the depth-averaged assumptions are valid (i.e., the velocity in the ver-
tical direction is negligible). Hence, HIVEL2D is not applicable to river 
ow simulation
or to simulation of 
ow over a spillway.

HIVEL2D uses a Petrov-Galerkin �nite element formulation for the spatial derivatives
and the Newton-Raphson iterative method for the resulting system of nonlinear equa-
tions, W �(Qn; X), where the vector X represents the coordinates of a particular grid
and Qn is the current set of 
ow variables. W �(Qn; X) contains terms that represent the
temporal derivative. At each time step, the Newton-Raphson iterative method solves the
system by updating the set of 
ow variables Qn, after solving the following system of
equations for �Q

"
@W �(Qn)

@Q

#
[�Q] = � [W (Qn)] (2)
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4 Sensitivity Equations

For open-channel 
ow design problems, the objective function is directly a function of
the 
ow variables. These 
ow variables depend on the channel design, which are de-
termined from the design variables ~�. Thus, the objective function may be written as
F = F [Qss(~�)] where Qss denotes a vector of 
ow variables and ~� denotes a vector of
design variables. The 
ow variables represent the steady-state values for a particular set
of design variables. In a more general setting, the objective function can be a function of
the 
ow variables Q, the grid discretization X, which is a vector of spatial coordinates
dependent on ~�, and the design variables ~�. For the results in this paper, the objective
function is only a function of Qss. In order to minimize the objective function, the gra-
dient is needed and is calculated via a discrete implementation of the adjoint variable
formulation of direct di�erentiation[1], which is presented below.

As discussed in Section 3, after discretization, an implicit algorithm yields a system of
nonlinear algebraic equations,W �(Q( ~B); X( ~B); ~B). For the steady-state solutionQss( ~B),
the system of equation is equal to zero. Furthermore, the terms containing the temporal
derivative can be ignored, resulting in a simpli�ed system of equations, orh

W
�
Qss(~�); X(~�); ~�

�i
= [0] (3)

For this paper, the system of nonlinear equations is not directly dependent on ~�. The
code HIVEL2D solves this set of equations as described in the previous section.

In order to apply derivative based optimization algorithms to the objective function F ,
it is necessary to estimate the variation of F with respect to each design variable �i.
Hence,

dF

d�i
=

"
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#T "
@Q
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#
(4)

Once a steady-state solution has been obtained, di�erentiation of the system of equations
arising from the solution algorithm yields
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Multiplying eq. (5) by an arbitrary adjoint vector [�] and adding to eq. (4) yields
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By choosing [�] such that
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eq. (6) simpli�es to
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(8)

The vector [�] is calculated by taking the transpose of eq. (7) and solving the resulting
equation

"
@W (Qss)

@Q

#T
[�] = �

"
@F (Qss)

@Q

#T
(9)

Since HIVEL2D solves the similar equation,

"
@W (Qn)

@Q

#
[�Q] = � [W (Qn)] (10)

HIVEL2D can be used to solve for [�] by changing the right-hand side and using the

transpose of
h
@W
@Q

i
. From eq. (9), it can be seen that [�] is the same for each set of design

variables and needs to be calculated just once for each design iteration. If there are more
than one objective function to be optimized, then eq. (9) must be solved once for each
objective function.

Once [�] is determined, dF
d�i

can be approximated using the di�erence quotient for dW
d�i

.
Thus,

dF

d�i
(~�) � [�]T

2
4W (~� +��i)�W (~�)

��i

3
5 (11)

The primary advantage of the discrete adjoint formulation of direct di�erentiation is
that for each iteration in the design optimization algorithm, the method of direct di�er-
entiation requires only one solution of eq. (9) per design iteration, instead of repeated
solutions of eq. (10) in order to obtain a steady-state solution for each perturbed design
variable.
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5 Optimization Routine

For a particular set of design variables ~�o, only the function value F (~�o) and the gradient

rF (~�o) are known. Thus, the method of steepest descent is used to update the design
variables. In general, the method of steepest descent updates the design variables by
moving a certain distance in the direction of the gradient (if a maximum value is desired)
or in the opposite direction of the gradient (if a minimum value is desired).

A scaling factor � is used to insure that the function value and the gradient are of
the same magnitude as the design variables. In particular, � = F (~�o)=jrF (~�o)j2. In
one dimension, this value of � reduces the technique to Newton's Method for solving
F (�) = 0. For general design optimization problems, the necessary condition for ~�� to

be the optimal solution is rF (~��) = 0, but F (~��) is not necessarily zero. Thus, as ~�

approaches a minimum, the value of � grows without bound, unless F (~�) also approaches
zero. To avoid this problem, the scaling factor � is limited in magnitude to some value,
dependent on the problem.

To determine the best distance to travel in the gradient direction, an additional function
evaluation is performed to obtain F (~�1) = F (~�o � �rF (~�o)), and the curve in the

gradient direction is approximated by a quadratic function, ~f(�) = F (~�o � ��rF (~�o)).
Using ~f(0) = F (~�o), ~f 0(0) = ��jrF (~�o)j2 and ~f(1) = F (~�o � �rF (~�o)), the minimum
of the quadratic function occurs at

�min =
F (~�o)

2F (~�1)
(12)

unless � has been set to its maximum value, in which case

�min =
�jrF (~�o)j2

2(F (~�1)� F (~�o) + �jrF (~�o)j2)
(13)

If � > 1:0, then � is set to 1.0. This precaution is used when the function value F (~�1)

is much less than F (~�o), in which case the quadratic function does not accurately re
ect
the problem to be minimized and its results are ignored.

The method of steepest descent has some disadvantages. Primarily, it yields only linear
convergence which requires a large number of design iterations to converge to a solution.
Also, this method often demonstrates a \zig-zag" behavior as it slowly progresses towards
a solution. This behavior is demonstrated in Test Problem #3. If the Hessian matrix
(second derivative matrix) was known or could be directly calculated, then the optimiza-
tion process could yield superlinear, or even quadratic, convergence. The Hessian matrix
can be approximated in various ways, but these approximations require many function
evaluations, possibly negating the advantages of its use.
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6 Test Problem #1 - Channel Contraction

The �rst test problem involved a channel contraction, with three design variables. The
grid was structured with a width of 9 grid points and a length of 49 grid points, uni-
formly spaced in both directions. The channel contraction covered a length of 100 ft and
contracted from 40 ft to 20 ft wide,
as shown in Figure 6.1. The shape
of the contraction was a curve deter-
mined by a sixth degree polynomial
equation. This polynomial curve was
chosen such that the curve matched
the walls of the channel before and af-
ter the contraction, matched the slope
of these walls before and after the
contraction and passed through three
speci�ed points, which were the de-
sign variables. These three points
were equally spaced in the direction
of the 
ow and spaced normal to the
general 
ow direction based on the
value of the three design variables.
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Test Problem #1
Target Design (2.0, 5.0, 7.0)

Figure 6.1. Target Channel Contraction.

The 
ow conditions upstream of the channel contraction were the depth = 1.0 ft, the
tangential velocity = 28.375 ft/sec and the normal velocity = 0.0 ft/sec, resulting in a
Froude number of 5.0, which was in the supercritical regime.

The goal of this test was to iterate from an initial set of design variables to a target
set for which the 
ow was already determined. The target set was (2.0, 5.0, 7.0) and is
shown in Figure 6.2.

Contraction Length = 100ft

Var. #3
Var. #1

Var. #2

Smooth Junction

Smooth Junction

Flow Direction

Figure 6.2. Design Variables for Contraction.
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The objective function was chosen as the sum of the square of the di�erences between
the target depth and the current iteration's depth for a set of grid points downstream
of the contraction, in particular the grid points across the 
ow along one column of the
grid, or

F (�1; �2; �3) =
270X
i=262

(depth(nodei; target)� depth(nodei; current))
2 (14)
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Test Problem #1
Wall Contraction Curves for Various Iterations

Initial Curve (1.0, 3.0, 8.0)
Iteration #5
Iteration #10
Iteration #20
Target Curve (2.0, 5.0, 7.0)

Figure 6.3. Contraction Curves for Various Iterations.

The initial set of design variables was (1.0, 3.0, 8.0), which produced an objective function
value of 5.2522. Using the adjoint variable formulation of direct di�erentiation to estimate
the value of @F

@�i

for each design variable, the design variables were updated for successive
iterations, using the method of steepest descent with one linear search as described in
Section 5. Some of the curves for various iterations are shown in Figure 6.3. After 29
iterations, the design variables were (1.956, 4.999, 6.995), which produced an objective
function value of 0.0001005. The stopping criterion was when each design space derivative
was less than 0.01.
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In order to observe the optimization process, the value of the function for each itera-
tion was plotted versus the iteration number. Figure 6.4 shows that the design process
updated the design variables so that the objective function continued to approach zero.
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Figure 6.4. Log of Objective Function versus Iteration.

To demonstrate the iteration process, the values of the design variables, the design space
derivatives and the scaling terms are listed for some of the iterations.

Iter. �1 �2 �3 F (~�o)
@F
@�1

@F
@�2

@F
@�3

F (~�1) � �

1 1.0 3.0 8.0 5.252 0.826 -3.135 4.025 0.552 0.197 1.000
2 0.838 3.616 7.209 0.552 0.214 -0.913 1.312 0.357 0.212 0.774
3 0.802 3.766 6.993 0.338 0.330 -0.680 -0.272 0.448 0.525 0.377
4 0.737 3.901 7.047 0.269 0.197 -0.627 0.303 0.231 0.513 0.583
5 0.678 4.089 6.956 0.303 -0.041 -0.341 0.617 0.194 0.609 0.784
... ... ... ... ... ... ... ... ... ... ...
25 1.896 4.983 6.984 .00079 -0.021 0.001 0.005 .00054 1.712 0.73
26 1.921 4.982 6.991 .00062 -0.013 -0.029 -0.0002 .0003 0.632 1.00
27 1.930 4.999 6.991 .00030 -0.014 -0.012 -0.0010 .0003 0.850 0.58
28 1.937 4.993 6.991 .00025 -0.012 -0.003 -0.002 .00010 1.669 1.00
29 1.956 4.999 6.995 .00010 -0.008 -0.007 -0.0008 .00018 0.847 0.28
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7 Test Problem #2 - Optimal Channel Contraction

Length

For the second test problem, the channel contraction had straight walls with the only de-
sign variable being the length of the contraction. From the equations governing an oblique
hydraulic jump caused by a straight wall channel contraction, it can be demonstrated
that the 
ow immediately downstream of the contraction is uniform if the contraction
length is chosen properly. This phenomenon occurs because the waves created at the be-
ginning of the contraction strike the walls at the end of the contraction and are negated
by the waves created at the end of the contraction, as shown in Figure 7.1.

Contraction Length

40 ft 30 ft

Figure 7.1. Overview of Channel Showing the Oblique Waves.

The correct contraction length is dependent on the properties of the incoming 
ow and
on the amount of the channel contraction. For this problem, the Froude number was 5.0,
the 
ow depth was 1.0 ft, and the channel contracted from 40.0 ft to 30.0 ft. The grid
was a structured grid with 9 grid points across the channel. The number of grid points
in the contraction was dependent on the length of the contraction so that the distance
between grid points was approximately 5.0 ft. The objective function was chosen as a
measure of the non-uniformity along 10 lines of 9 nodes across the channel, or the sum
of the squares of the di�erence between the depths at adjacent grid points in 10 lines
across the channel and is given by

F (�) =
k+9X
col=k

 
9X

row=2

�
depth(col; row)� depth(col; row � 1)

�2!
(15)

Starting with a contraction length of 80.0 ft, the function value was 3.700. After 10
iterations, the value of the objective function was 0.062 for a contraction length of 157.87
ft. Using the equations governing oblique hydraulic jumps, the length of the contraction
was determined to be approximately 155.65 ft. Since the equations governing oblique
hydraulic jumps are derived using di�erent assumptions from those used in the shallow
water equations, one would expect the observed discrepancy in the two answers.
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Figure 7.2. Graph of the Objective Function.

After �nding the minimum value of the objective function, the function value was com-
puted for various contraction lengths and plotted in Figure 7.2. From this plot, three
minimums are seen, near lengths of 160, 315 and 480. These minimums correspond to
the initial oblique wave hitting the end of the contraction with no re
ections, with one
re
ection and with two re
ections, respectively. By plotting the objective function value
versus the iteration number (Figure 7.3), it is clear that the method of steepest descent
found an excellent value of the design variable at iteration number 3. Further signi�cant
improvement could not be made because the minimum value of the objective function
was not zero.
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Figure 7.3. Graph of the Objective Function versus Iteration.
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The plots of the depths for the steady state solutions generated by the initial design and
the �nal design are given below.
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8 Test Problem #2a - Optimal Contraction Length

on a Re�ned Grid

The goal of any optimization routine is to locate the region of an optimal value of
a function for a particular problem. In the �rst two test problems, the derivatives
produced by the adjoint variable formulation of direct di�erentiation coupled with
the method of steepest descent
guided the optimization process
to the proper region in design
space. In performing good com-
putational work, one of the goals
is to solve the discretized set of
equations in such a way that the
grid spacing does not a�ect the
solution. For the �rst two test
cases, the grid size was not re-
�ned enough to produce this grid
independence. In order to test
the grid independence of the de-
sign algorithm, the optimization
process was applied to the pre-
vious problem with a more re�ned grid, using 21 nodes across the channel instead of 9
nodes and a corresponding number of nodes along the length of the channel.

After adjusting the objective function to measure the non-uniformity for the same re-
gion of the channel, the op-
timization process was ap-
plied with the initial contrac-
tion length of 80 ft, which
yielded a value of 4.890. Af-
ter 10 iterations, the contrac-
tion length was 154.48 ft pro-
ducing an objective function
of 0.018. The optimal con-
traction length for the origi-
nal grid and the re�ned grid
were o� by over 3 ft. This
di�erence is probably a re-
sult of the poor grid spac-
ing, and the associated dis-
cretization error, of the pre-

vious problem. The results of this test problem indicate that the optimization process
was able to locate the region of the optimal function value for this re�ned problem.
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9 Test Problem #3 - Two Design Variable Channel

Contraction Optimization

The third test problem was similar to the second test problem in that a uniform down-
stream 
ow was desired. In Test Problem #2, the design variable governed the length of
the contraction, which consisted of one straight wall. In this test problem, the contrac-
tion length was �xed at 140.0 ft, which was shorter than the optimal length. In order
to obtain uniform 
ow, the contraction walls were comprised of two adjustable, straight
reaches instead of one, as shown in Figure 9.1. The two design variables controlled the
location of the junction between the two reaches.

Contraction Length (140 ft)

30 ft40 ft

Var. #1
Var. #2

Figure 9.1. Overview of Channel Showing the Two Design Variables.

As in Test Problem #2, the grid was a regular grid with 9 grid points across the channel
and 41 grid points along the length of the channel. The Froude number was 5.0, the
in
ow depth was 1.0 ft and the channel contracted from 40.0 ft to 30.0 ft. The number of
grid points in each reach was adjusted so that the distance between the grid points in the
two reaches were approximately the same. The objective function was similar to the one
in the previous problem and was a measure of the non-uniformity across the channel. As
a perfectly uniform 
ow was not expected, the minimum value of the objective function
was not expected to be zero.

In this problem, the junction between the two reaches was initially located 70 feet down-
stream from the beginning of the contraction and 2.5 ft across the 
ow from the location
of the initial channel width. Since these values were of di�erent magnitudes, scaled de-
sign variables were used, so that both design variables were 2.5 initially. For these initial
values, the objective function was 0.378. After 60 iterations, the objective function was
0.041 for design variables of 25.2868 ft and 0.3923 ft, a reduction of 89.3%.

15



0 5 10 15 20 25 30 35 40 45 50 55 60
Iteration Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
un

ct
io

n 
V

al
ue

Objective Function Values
For Two Segment Straight Wall Channel Contraction

Two Design Variable Problem

Method of Steepest Descent

Figure 9.2. Graph of Objective Function
Value versus Iteration.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
Design Variable 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
es

ig
n 

V
ar

ia
bl

e 
2

Location of Design Variables
Demonstrating Zig−Zag Behavior of Method of Steepest Descent

Figure 9.3. Graph of Location of Design
Variables.

The graph of the objective function value versus iteration (Figure 9.2) shows that the
value decreased rapidly at �rst and much more slowly as the design variables got closer to
the optimal solution. By observing succesive values of the design variables (Figure 9.3),
it was clear that the method of steepest descent was displaying its well-known \zig-zag"
behavior. The location of the design variables moved from the upper right to the lower
left for successive iterations.
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10 Test Problem #4 - Uniform Flow for a Curved

Wall Contraction

Test Problem #4 used a channel contraction similar to the one used in Test Problem
#1, where three design variables determined the polynomial that de�ned the channel
contraction curve. Recall that the channel contracts from 40 ft to 20 ft over a distance
of 100 ft. For this test case, the goal was uniform downstream 
ow, so the same type
of objective function used in the previous test problem was employed. For comparison
purposes, a straight wall channel contraction of this length and for the 
ow conditions
produced an objective function value of 2.235.

Because the goal was to obtain the global minimum of the objective function, the design
iteration process was performed many times, starting from di�erent initial sets of design
variables. There were three possible outcomes for any design iteration process:

1.) Produce an invalid set of design variables, so that the simulation process
failed for the resulting grid.

2.) Settle in a region of a local (sub-optimal) minimum.
3.) Settle in the region of the global minimum.

After running the design iteration process for 30 di�erent initial sets of design variables,
the design process blew up 3 times, found a local minimum 17 times and found the
global minimum 10 times. For this problem, it appears that there is only one sub-
optimal local minimum, near (3.49, 5.77, 8.30) yielding an function value of approximately
0.316. The global minimum lies near (4.76, 7.66, 10.37) and produces a function value
of approximately 0.007, or a 99.6% improvement over the straight wall contraction.
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11 Conclusion

From this preliminary investigation into using the adjoint variable formulation of direct
di�erentiation to design high-velocity channels, the results are encouraging. The imple-
mentation using HIVEL2D demonstrates that it is possible to use this technique with a
�nite element solver and for the shallow water equations, neither of which had not been
previously investigated.

From the viewpoint of an e�cient design algorithm, the adjoint variable formulation
is much better than a �nite di�erence formulation of the gradient due to the need for
only one steady-state solution calculation per design iteration, instead of N + 1 steady-
state solutions where N is the number of design variables. Unfortunately, the method
of steepest descent is not an e�cient optimization algorithm as evidenced by the large
number of design iterations, its linear convergence properties and \zig-zag" behavior.
More research into e�cient use of gradient information is recommended, including the
study of a least-square formulation of the objective function, possible bene�ts of applying
the conjugant gradient method, and the use of Hessian update methods.

The �rst two test cases presented in this paper were formulated such that an exact soluton
for the design problem was known. In both cases, the design optimization technique
correctly identi�ed a close approximation to the solution and appeared to be converging
to it. In the last two test problems, the optimal solution was not known. For the third
test problem, the technique demonstrated an 89% improvement over the initial design. In
the fourth test problem, a curved wall contraction was used whose shape was determined
by 3 design variables. The global minimum was over 99% better than a straight wall
contraction.

Hence, with simple geometries, the adjoint formulation of direct di�erentiation yields
design space gradients that move the design variables towards an improved design, with
much less computational expense. In all the test problems, this design process accurately
identi�ed a region in design space that contained an optimal solution for the particular
problem. This deterministic technique is currently begin extended to more complex
problems with friction and nonzero bed slopes. Also, various formulations of objective
functions that measure non-uniformity are being analyzed, in order to �nd the most
sensitive. The goal of this work is demonstrate that the adjoint variable formulation
of direct di�erentiation can be coupled with a shallow water equation solver to yield a
viable, deterministic, design optimization algorithm.

12 References

[1] Huddleston, D. and Soni, B. (1996), \Application of a Factored Newton-Relaxation
Scheme to Calculation of Discrete Aerodynamic Sensitivity Derivatives," Inverse Prob-
lems in Engineering Vol. 3, pp.115-130.

18



[2] Stockstill, R., and Berger, R. (1994). \HIVEL2D: A Two-Dimensional Flow Model
for High-Velocity Channels", Technical Report REMR-HY-12, U.S. Army Engineer Wa-
terways Experiment Station, Vicksburg, MS.

[3] Abbott, M. (1979). Computation Hydraulics, Elements of the Theory of Free

Surface Flows, Pitman Advanced Publishing Limited, London.

[4] Scales, L. (1985). Introduction to Nonlinear Optimization, Springer-Verlag, New York.

19


